
Week 13 - Monday



 What did we talk about last time?
 Exam 2 post mortem
 Quicksort











 How many ways are there to order n items?
 n different things can go in the first position, leaving n – 1 to 

go in the second position, leaving n – 2 things to go into the 
third position…

 n (n – 1) (n – 2) … (2)(1) = n!
 In other words, there are n! different orderings, and we have 

to do some work to find the ordering that puts everything in 
sorted order



 Imagine a tree of decisions
 Some sequence of decisions will lead to a leaf of the tree
 Each leaf of the tree represents one of those n! orders

n!



 What is the smallest height the tree could have?
 A perfectly balanced binary tree with k leaves will have a height of log2(k)
 Since we have n! leaves, the smallest height will be log2(n!)

n!

log(n!)



 Any comparison-based sort is going to compare two values 
and make a decision based on that

 No matter what your algorithm is, if each comparison is a 
decision in the tree that leads you down to a sorted order, the 
best you can possibly do is log2(n!)

 But what is log2(n!)?
 I wish I could show you the math that backs this up, but 

Stirling's approximation says that log2(n!) is Θ(𝑛𝑛 log𝑛𝑛)
 Take away: No comparison-based sort can ever be better 

than Θ(𝑛𝑛 log𝑛𝑛) for worst-case running time





 Lets focus on an unusual sort that lets us (potentially) get 
better performance than Θ(𝑛𝑛 log𝑛𝑛)

 But, I thought Θ(𝑛𝑛 log𝑛𝑛) was the theoretical maximum!
 Some sorts don't require comparison of values



 You use counting sort when you know that your data is in a 
narrow range, like, the numbers between 1 and 10 or even 1
and 100

 As long as the range of possible values is in the neighborhood 
of the length of your list, counting sort can do well

 Example: 150 integer grades between 1 and 100
 Doesn't work for sorting double or String values



 Make an array with enough elements to hold every possible 
value in your range of values
 If you need 1 – 100, make an array with length 100

 Sweep through your original list of numbers, when you see a 
particular value, increment the corresponding index in the 
value array

 To get your final sorted list, sweep through your value array 
and, for every entry with value k > 0, print its index k times



 We know our values will be in the range [1,10]
 Our example array:

 Our values array:

 The result:

6 2 10 6 1 2 7 2

1 3 0 0 0 2 1 0 0 1

1 2 3 4 5 6 7 8 9 10

1 2 2 2 6 6 7 10



public static void countingSort(
int[] numbers, int min, int max) {
…

}

 The numbers in values are guaranteed to fall between min
(inclusive) and max (inclusive).

 Note that the min and max could be negative.



 It takes O(n) time to scan through the original array
 But, now we have to take into account the number of values 

we expect
 So, let’s say we have m possible values
 It takes O(m) time to scan back through the value array, with 

O(n) additional updates to the original array
 Time: O(n + m)





 We can "generalize" counting sort somewhat
 Instead of looking at the value as a whole, we can look at individual digits 

(or even individual characters)
 First, we collect everything whose ones places is a 0
 Then, we collect everything whose ones place is a 1

▪ Then, we collect everything whose ones place is a 2
▪ …

 If we store everything that ends with a 0, then everything that ends with a 
1, then everything that ends with a 2, etc., will the list be sorted?
 No!

 But if we take that list of numbers and then repeat the process on the 
tens places, hundreds place, and so on, for however many places we 
need, they will be sorted!



 If we had a way to sort everything first by the ones place:

 Then by the tens place:

 Then by the hundreds place:

 This array would be sorted, since it only goes up to the hundreds

7 45 0 54 37 108 51

0 51 54 45 7 37 108

0 7 108 37 45 51 54

0 7 37 45 51 54 108



 For decimal numbers, we would only need 10 buckets (0 – 9)
 We count how many things would go into each bucket, which 

can allow us to copy the values with a particular digit into a 
scratch array based on the size of each digit's range

 Then we copy everything back into the original array
 The book discusses MSD and LSD string sorts, which are 

similar



 Pros:
 Best, worst, and average case running time of O(nk) where k is the number of 

digits we look at
 Stable for least significant digit (LSD) version
 Surprisingly fast

 Cons:
 Requires a fixed number of digits to be checked (even if most numbers are 

shorter)
 Unstable for most significant digit (MSD) version
 Works poorly for floating point and non-digit based keys

▪ But can work for strings!
 Not in-place



 For integers, make 10 buckets (0-9)
 Actually, we make 11 buckets to make computing the starting points for each range of 

digit values easier
 Loop through our numbers, counting how many numbers would go into each 

bucket based on the digit in the current place (except store it in the next digit 
up)

 Loop through our digit counts, summing the previous values to find the starting 
points of each range

 Loop through our numbers again, copying each one into a scratch array in the 
first open spot in its digit range 
 Increase the counter for the digit range so we know the next open spot

 Copy everything from the scratch array back into the original array
 If there are more digits to consider, move to the next digit and repeat the 

process



0 1 2 3 4 5 6 7 8 9 10

0 1 1 0 0 1 1 0 2 1 0

0 1 2 3 4 5 6 7 8 9 10

7 45 0 54 37 108 51Array:

Digit counts:
(Shifted by 1)

Summed digit 
counts:

Scratch 
regions:

0 1 2 2 2 3 4 4 6 7 7

0 1 2 3 4 5 6

Scratch 
filled: 0 51 54 45 7 37 108



0 1 2 3 4 5 6 7 8 9 10

0 3 0 0 1 1 2 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10

0 51 54 45 7 37 108Array:

Digit counts:
(Shifted by 1)

Summed digit 
counts:

Scratch 
regions:

0 3 3 3 4 5 7 7 7 7 7

0 1 2 3 4 5 6

Scratch 
filled: 0 7 108 37 45 51 54



0 1 2 3 4 5 6 7 8 9 10

0 6 1 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10

0 7 108 37 45 51 54Array:

Digit counts:
(Shifted by 1)

Summed digit 
counts:

Scratch 
regions:

0 6 7 7 7 7 7 7 7 7 7

0 1 2 3 4 5 6

Scratch 
filled: 0 7 37 45 51 54 108



 In recap:
1. Count how many keys go into each bucket
2. After doing so, add up values in the count array so that the starting 

point of each bucket in the final array is known
3. Copy all values into their correct bucket ranges in a scratch array
4. Copy all values back into the original array 

 Repeat for each place value: ones, tens, hundreds, etc.
 After ordering everything in increasing place values, the 

array will be sorted





 A maximum heap is a complete binary tree where
 The left and right children of the root have key values less than the 

root
 The left and right subtrees are also maximum heaps

 We can define minimum heaps similarly 



10

9 3

0 1



 We have to keep the tree complete
 Recall that a complete binary tree is one where every level is filled, 

except possibly the last one, which is filled in from the left
 We always add to the next open spot in the current level
 Or make a new level if the current level is full



 The next open 
spot is left of 3

10

9 3

0 1



 Oh no! 10

9 3

0 1 15



10

9 3

0 1 15

10

9 15

0 1 3

15

9 10

0 1 3



10

9 3

0 1



9 3

0 1

9 3

0

1



9 3

0

1

1 3

0

9



 Heaps only have:
 Add
 Remove Largest
 Get Largest

 Which cost:
 Add: O(log n)
 Remove Largest: O(log n)
 Get Largest: O(1)

 Heaps are a perfect data structure for a priority queue





 Finish heaps
 Heapsort
 TimSort
 Visualization of sorting



 Work on Project 4
 Work on Assignment 7
 Keep reading Section 2.4


	COMP 2100
	Last time
	Questions?
	Project 4
	Assignment 7
	Lower Bound on Sorting
	The fastest sort
	A different kind of tree
	Tree height
	Comparison-based sorts
	Counting Sort
	Counting sort justification
	Counting sort paradigm
	Counting sort algorithm
	Counting sort example
	Counting sort implementation
	How long does it take?
	Radix Sort
	Radix sort
	Intuition
	Radix sort
	Radix sort
	Radix sort algorithm
	Radix sort example (ones place)
	Radix sort example (tens place)
	Radix sort example (hundreds place)
	Radix sort implementation
	Heaps
	Heaps
	Heap example
	How do you know where to add?
	New node
	Add 15
	After an add, bubble up
	Only the root can be deleted
	Replace it with the "last" node
	Then, bubble down
	Operations
	Upcoming
	Next time…
	Reminders

